The Extracts of Artemisia absinthium L. Suppress the Growth of Hepatocellular Carcinoma Cells through Induction of Apoptosis via Endoplasmic Reticulum Stress and Mitochondrial-Dependent Pathway

Molecules. 2019 Mar 5;24(5):913. doi: 10.3390/molecules24050913.

Abstract

Artemisia absinthium L. has pharmaceutical and medicinal effects such as antimicrobial, antiparasitic, hepatoprotective, and antioxidant activities. Here, we prepared A. absinthium ethanol extract (AAEE) and its subfractions including petroleum ether (AAEE-Pe) and ethyl acetate (AAEE-Ea) and investigated their antitumor effect on human hepatoma BEL-7404 cells and mouse hepatoma H22 cells. The cell viability of hepatoma cells was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The apoptosis, cell cycle, mitochondrial membrane potential (Δψm), and reactive oxygen species (ROS) were analyzed by flow cytometry. The levels of proteins in the cell cycle and apoptotic pathways were detected by Western blot. AAEE, AAEE-Pe, and AAEE-Ea exhibited potent cytotoxicity for both BEL-7404 cells and H22 cells through the induction of cell apoptosis and cell cycle arrest. Moreover, AAEE, AAEE-Pe, and AAEE-Ea significantly reduced Δψm, increased the release of cytochrome c, and promoted the cleavage of caspase-3, caspase-9, and poly(ADP-ribose) polymerase (PARP) in BEL-7404 and H22 cells. AAEE, AAEE-Pe, and AAEE-Ea significantly upregulated the levels of ROS and C/EBP-homologous protein (CHOP). Further, AAEE, AAEE-Pe, and AAEE-Ea significantly inhibited tumor growth in the H22 tumor mouse model and improved the survival of tumor mice without side effects. These results suggest that AAEE, AAEE-Pe, and AAEE-Ea inhibited the growth of hepatoma cells through induction of apoptosis, which might be mediated by the endoplasmic reticulum stress and mitochondrial-dependent pathway.

Keywords: Artemisia absinthium; apoptosis; endoplasmic reticulum stress; mitochondrial-dependent pathway.

MeSH terms

  • Animals
  • Antineoplastic Agents, Phytogenic / chemistry*
  • Antineoplastic Agents, Phytogenic / pharmacology*
  • Apoptosis / drug effects*
  • Artemisia absinthium / chemistry*
  • Cell Cycle Checkpoints / drug effects
  • Cell Line, Tumor
  • Endoplasmic Reticulum Stress / drug effects*
  • Humans
  • Inhibitory Concentration 50
  • Membrane Potential, Mitochondrial / drug effects
  • Mitochondria / drug effects
  • Plant Extracts / chemistry*
  • Plant Extracts / pharmacology*
  • Reactive Oxygen Species / metabolism
  • Signal Transduction / drug effects

Substances

  • Antineoplastic Agents, Phytogenic
  • Plant Extracts
  • Reactive Oxygen Species