Plasmon Heating Promotes Ligand Reorganization on Single Gold Nanorods

J Phys Chem Lett. 2019 Mar 21;10(6):1394-1401. doi: 10.1021/acs.jpclett.9b00079. Epub 2019 Mar 12.

Abstract

Single-molecule fluorescence microscopy is used to follow dynamic ligand reorganization on the surface of single plasmonic gold nanorods. Fluorescently labeled DNA is attached to gold nanorods via a gold-thiol bond using a low-pH loading method. No fluorescence activity is initially observed from the fluorescent labels on the nanorod surface, which we attribute to a collapsed geometry of DNA on the metal. Upon several minutes of laser illumination, a marked increase in fluorescence activity is observed, suggesting that the ligand shell reorganizes from a collapsed, quenched geometry to an upright, ordered geometry. The ligand reorganization is facilitated by plasmon-mediated photothermal heating, as verified by controls using an external heat source and simulated by coupled optical and heat diffusion modeling. Using super-resolution image reconstruction, we observe spatial variations in which ligand reorganization occurs at the single-particle level. The results suggest the possibility of nonuniform plasmonic heating, which would be hidden with traditional ensemble-averaged measurements.