Binary mixtures of ionic liquids-DMSO as solvents for the dissolution and derivatization of cellulose: Effects of alkyl and alkoxy side chains

Carbohydr Polym. 2019 May 15:212:206-214. doi: 10.1016/j.carbpol.2019.02.024. Epub 2019 Feb 16.

Abstract

The efficiency of mixtures of ionic liquids (ILs) and molecular solvents in cellulose dissolution and derivatization depends on the structures of both components. We investigated the ILs 1-(1-butyl)-3-methylimidazolium acetate (C4MeImAc) and 1-(2-methoxyethyl)-3-methylimidazolium acetate (C3OMeImAc) and their solutions in dimethyl sulfoxide, DMSO, to assess the effect of presence of an ether linkage in the IL side-chain. Surprisingly, C4MeImAc-DMSO was more efficient than C3OMeImAc-DMSO for the dissolution and acylation of cellulose. We investigated both solvents using rheology, NMR spectroscopy, and solvatochromism. Mixtures of C3OMeImAc-DMSO are more viscous, less basic, and form weaker hydrogen bonds with cellobiose than C4MeImAc-DMSO. We attribute the lower efficiency of C3OMeImAc to "deactivation" of the ether oxygen and C2H of the imidazolium ring due to intramolecular hydrogen bonding. Using the corresponding ILs with C2CH3 instead of C2H, namely, 1-butyl-2,3-dimethylimidazolium acetate (C4Me2ImAc) and 1-(2-methoxyethyl)-2,3-dimethylimidazolium acetate (C3OMe2ImAc) increased the concentration of dissolved cellulose; without noticeable effect on biopolymer reactivity.

Keywords: Biopolymer derivatization; Cellulose dissolution; Cellulose esters; Ionic liquid-DMSO; Solvatochromism.