Detection of stable QTLs for grain protein content in rice (Oryza sativa L.) employing high throughput phenotyping and genotyping platforms

Sci Rep. 2019 Mar 1;9(1):3196. doi: 10.1038/s41598-019-39863-2.

Abstract

Lack of appropriate donors, non-utilization of high throughput phenotyping and genotyping platforms with high genotype × environment interaction restrained identification of robust QTLs for grain protein content (GPC) in rice. In the present investigation a BC3F4 mapping population was developed using grain protein donor, ARC10075 and high-yielding cultivar Naveen and 190 lines were genotyped using 40 K Affimetrix custom SNP array with the objective to identify stable QTLs for protein content. Three of the identified QTLs, one for GPC (qGPC1.1) and the other two for single grain protein content (qSGPC2.1, qSGPC7.1) were stable over the environments explaining 13%, 14% and 7.8% of the phenotypic variances, respectively. Stability and repeatability of these additive QTLs were supported by the synergistic additive effects of multi-environmental-QTLs. One epistatic-QTL, independent of the main effect QTL was detected over the environment for SGPC. A few functional genes governing seed storage protein were hypothesised inside these identified QTLs. The qGPC1.1 was validated by NIR Spectroscopy-based high throughput phenotyping in BC3F5 population. Higher glutelin content was estimated in high-protein lines with the introgression of qGPC1.1 in telomeric region of short arm of chromosome 1. This was supported by the postulation of probable candidate gene inside this QTL region encoding glutelin family proteins.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Chromosome Mapping
  • Crosses, Genetic
  • Environment
  • Epistasis, Genetic
  • Gene Expression Regulation, Plant
  • Genetic Association Studies
  • Genetic Linkage
  • Genotyping Techniques*
  • Grain Proteins / metabolism*
  • Inbreeding
  • Oryza / genetics*
  • Phenotype
  • Polymorphism, Single Nucleotide / genetics
  • Quantitative Trait Loci / genetics*
  • Reproducibility of Results

Substances

  • Grain Proteins