A Naturally Occurring Polymorphism in the HIV-1 Tat Basic Domain Inhibits Uptake by Bystander Cells and Leads to Reduced Neuroinflammation

Sci Rep. 2019 Mar 1;9(1):3308. doi: 10.1038/s41598-019-39531-5.

Abstract

HIV-1 Tat protein contributes to HIV-neuropathogenesis in several ways including its ability to be taken up by uninfected bystander CNS cells and to activate inflammatory host genes causing synaptic injury. Here, we report that in the globally dominant HIV-1 clade C, Tat displays a naturally occurring polymorphism, R57S, in its basic domain, which mediates cellular uptake. We examined the effect of this polymorphism on Tat uptake and its consequences for cellular gene transactivation. In decapeptides corresponding to the basic domain, a R57S substitution caused up to a 70% reduction in uptake. We also used a transcellular Tat transactivation assay, where we expressed Tat proteins of HIV-1 clade B (Tat-B) or C (Tat-C) or their position 57 variants in HeLa cells. We quantified the secreted Tat proteins and measured their uptake by TZM-bl cells, which provide readout via an HIV-1 Tat-responsive luciferase gene. Transactivation by Tat-B was significantly reduced by R57S substitution, while that of Tat-C was enhanced by the reciprocal S57R substitution. Finally, we exposed microglia to Tat variants and found that R57 is required for maximal neuroinflammation. The R57S substitution dampened this response. Thus, genetic variations can modulate the ability of HIV-1 Tat to systemically disseminate neuroinflammation.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Bystander Effect*
  • HIV-1* / genetics
  • HIV-1* / metabolism
  • HeLa Cells
  • Humans
  • Inflammation / genetics
  • Inflammation / metabolism
  • Inflammation / pathology
  • Inflammation / virology
  • Microglia* / metabolism
  • Microglia* / pathology
  • Neurons* / metabolism
  • Neurons* / pathology
  • Neurons* / virology
  • Polymorphism, Genetic*
  • Protein Domains
  • tat Gene Products, Human Immunodeficiency Virus* / genetics
  • tat Gene Products, Human Immunodeficiency Virus* / metabolism

Substances

  • tat Gene Products, Human Immunodeficiency Virus