ARC3 Activation by PARC6 Promotes FtsZ-Ring Remodeling at the Chloroplast Division Site

Plant Cell. 2019 Apr;31(4):862-885. doi: 10.1105/tpc.18.00948. Epub 2019 Mar 1.

Abstract

Chloroplast division is initiated by assembly of the stromal Z ring, composed of cytoskeletal Filamenting temperature-sensitive Z (FtsZ) proteins. Midplastid Z-ring positioning is governed by the chloroplast Min (Minicell) system, which inhibits Z-ring assembly everywhere except the division site. The central Min-system player is the FtsZ-assembly inhibitor ACCUMULATION AND REPLICATION OF CHLOROPLASTS3 (ARC3). Here, we report Arabidopsis (Arabidopsis thaliana) chloroplasts contain two pools of ARC3: one distributed throughout the stroma, which presumably fully inhibits Z-ring assembly at nondivision sites, and the other localized to a midplastid ring-like structure. We show that ARC3 is recruited to the middle of the plastid by the inner envelope membrane protein PARALOG OF ARC6 (PARC6). ARC3 bears a C-terminal Membrane Occupation and Recognition Nexus (MORN) domain; previous yeast two-hybrid experiments with full-length and MORN-truncated ARC3 showed the MORN domain mediates ARC3-PARC6 interaction but prevents ARC3-FtsZ interaction. Using yeast three-hybrid experiments, we demonstrate that the MORN-dependent ARC3-PARC6 interaction enables full-length ARC3 to bind FtsZ. The resulting PARC6/ARC3/FtsZ complex enhances the dynamics of Z rings reconstituted in a heterologous system. Our findings lead to a model whereby activation of midplastid-localized ARC3 by PARC6 facilitates Z-ring remodeling during chloroplast division by promoting Z-ring dynamics and reveal a novel function for MORN domains in regulating protein-protein interactions.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Arabidopsis / genetics
  • Arabidopsis / metabolism*
  • Arabidopsis Proteins / genetics
  • Arabidopsis Proteins / metabolism*
  • Chloroplasts / genetics
  • Chloroplasts / metabolism*
  • Membrane Proteins / genetics
  • Membrane Proteins / metabolism*
  • Plastids / genetics
  • Plastids / metabolism
  • Temperature

Substances

  • ARC3 protein, Arabidopsis
  • Arabidopsis Proteins
  • Membrane Proteins
  • PARC6 protein, Arabidopsis