DOA Estimation and Self-Calibration under Unknown Mutual Coupling

Sensors (Basel). 2019 Feb 25;19(4):978. doi: 10.3390/s19040978.

Abstract

In practical applications, the assumption of omnidirectional elements is not effective in general, which leads to the direction-dependent mutual coupling (MC). Under this condition, the performance of traditional calibration algorithms suffers. This paper proposes a new self-calibration method based on the time-frequency distributions (TFDs) in the presence of direction-dependent MC. Firstly, the time-frequency (TF) transformation is used to calculate the space-time-frequency distributions (STFDs) matrix of received signals. After that, the estimated steering vector and corresponding noise subspace are estimated by the steps of noise removing, single-source TF points extracting and clustering. Then according to the transformation relationship between the MC coefficients, steering vector and MC matrix, we deduce a set of linear equations. Finally, with two-step alternating iteration, the equations are solved by least square method in order to estimate DOA and MC coefficients. Simulations results show that the proposed algorithm can achieve direction-dependent MC self-calibration and outperforms the existing algorithms.

Keywords: DOA estimation; direction-dependent mutual coupling; self-calibration; time-frequency distribution.