Oxibendazole induces apoptotic cell death in proliferating porcine trophectoderm and uterine luminal epithelial cells via mitochondria-mediated calcium disruption and breakdown of mitochondrial membrane potential

Comp Biochem Physiol C Toxicol Pharmacol. 2019 Jun:220:9-19. doi: 10.1016/j.cbpc.2019.02.014. Epub 2019 Feb 27.

Abstract

The well-known and effective anthelmintic oxibendazole was recently shown to have a broad spectrum of biological abilities, such as anti-cancer and anti-inflammation activities. In contrast, the mechanism of oxibendazole's anti-proliferative effect via cell signaling pathways and its role in pre-implantation has not been studied. Therefore, in this study we demonstrated the effects of oxibendazole on the proliferation of porcine trophectoderm (pTr) cells and porcine luminal epithelial (pLE) cells, a well-known in vitro model system of the fetal-maternal interface. Cell proliferation decreased in both pTr and pLE cells in response to oxibendazole, and we determined that this was modulated through intracellular cell signal transduction. Phosphorylation of ERK1/2, P90RSK, and S6 were downregulated by exposure to a 200 nM dose of oxibendazole in both types of cells, while the expression of phosphorylated JNK, AKT, and P70S6K was upregulated. Pre-treatment with a PI3K/AKT inhibitor (Wortmannin), ERK1/2 inhibitor (U0126), and JNK inhibitor (SP600125) induced the signaling interactions of these molecules, and oxibendazole co-treatment with each inhibitor resulted in even greater decreases in cell proliferation. Furthermore, intracellular and mitochondrial calcium ion accumulation was observed, which would mean that calcium ion homeostasis was disrupted, causing damage to the mitochondrial membrane potential. These deteriorated conditions ultimately led to apoptotic cell death. Taken together, the results of the present study identified that the apoptotic effect of oxibendazole on pTr and pLE cells is regulated by cell signaling pathways, and thus oxibendazole could influence the connection between the conceptus and the maternal uterus.

Keywords: Apoptosis; Cell signaling pathway; Oxibendazole; Pre-implantation.

MeSH terms

  • Animals
  • Apoptosis / drug effects*
  • Benzimidazoles / toxicity*
  • Calcium / metabolism
  • Cell Line
  • Cell Proliferation / drug effects*
  • Cell Survival / drug effects
  • Epithelial Cells / drug effects*
  • Female
  • Gene Expression Regulation / drug effects
  • JNK Mitogen-Activated Protein Kinases / genetics
  • JNK Mitogen-Activated Protein Kinases / metabolism
  • Membrane Potential, Mitochondrial / drug effects
  • Mitochondria / drug effects*
  • Phosphatidylinositol 3-Kinases / genetics
  • Phosphatidylinositol 3-Kinases / metabolism
  • Proto-Oncogene Proteins c-akt / genetics
  • Proto-Oncogene Proteins c-akt / metabolism
  • Signal Transduction / drug effects
  • Swine
  • Uterus / cytology*

Substances

  • Benzimidazoles
  • oxibendazole
  • Phosphatidylinositol 3-Kinases
  • Proto-Oncogene Proteins c-akt
  • JNK Mitogen-Activated Protein Kinases
  • Calcium