Increased elastic modulus of plasma polymer coatings reinforced with detonation nanodiamond particles improves osteogenic differentiation of mesenchymal stem cells

Turk J Biol. 2018 Apr 27;42(2):195-203. doi: 10.3906/biy-1711-26. eCollection 2018.

Abstract

In the present study we demonstrated that composite PPHMDS/DND coatings with elastic moduli close to those of mature bone tissue (0.2-2.8 GPa) stimulated growth and osteogenic differentiation of human adipose-derived mesenchymal stem cells (hADMSCs). Composite coatings were prepared by a method of plasma polymerization (PP) where detonation nanodiamond (DND) particles in different amounts (0.1, 0.5, and 1 mg/mL) were added to hexamethyldisiloxane (HMDS) before plasma deposition. This method allows variation only in the reduced elastic modulus (Er´) with increase in the particle concentration, while the other surface properties, including surface wettability and topography, did not change. The response of hAD-MSCs to the increasing stifness showed an effect on adhesion and osteogenic differentiation but not on cell proliferation. Matrix mineralization and cell spreading were maximized on PPHMDS/DND coatings with the highest elastic modulus (2.826 GPa), while the differences in proliferation rates among the samples were negligible. In general, PPHMDS/DND coatings provide better conditions for growth and osteogenic differentiation of hAD-MSCs in comparison to glass coverslips, confirming their suitability for osteo-integration applications. Additionally, our findings support the hypothesis that biomaterials with elasticity similar to that of the native tissue can improve the differentiation potential of mesenchymal stem cells.

Keywords: Detonation nanodiamonds; bone implants; cell adhesion and growth; organosilicone; stifness.