Sub-10 nm stable graphene quantum dots embedded in hexagonal boron nitride

Nanoscale. 2019 Mar 7;11(10):4226-4230. doi: 10.1039/c9nr00412b.

Abstract

Graphene quantum dots (GQDs), a zero-dimensional material system with distinct physical properties, have great potential in the applications of photonics, electronics, photovoltaics, and quantum information. In particular, GQDs are promising candidates for quantum computing. In principle, a sub-10 nm size is required for GQDs to present the intrinsic quantum properties. However, with such an extreme size, GQDs have predominant edges with lots of active dangling bonds and thus are not stable. Satisfying the demands of both quantum size and stability is therefore of great challenge in the design of GQDs. Herein we demonstrate the fabrication of sub-10 nm stable GQD arrays by embedding GQDs into large-bandgap hexagonal boron nitride (h-BN). With this method, the dangling bonds of GQDs were passivated by the surrounding h-BN lattice to ensure high stability, meanwhile maintaining their intrinsic quantum properties. The sub-10 nm nanopore array was first milled in h-BN using an advanced high-resolution helium ion microscope and then GQDs were directly grown in them through the chemical vapour deposition process. Stability analysis proved that the embedded GQDs show negligible property decay after baking at 100 °C in air for 100 days. The success in preparing sub-10 nm stable GQD arrays will promote the physical exploration and potential applications of this unique zero-dimensional in-plane quantum material.