Shaping the Assembly of Superparamagnetic Nanoparticles

ACS Nano. 2019 Mar 26;13(3):3015-3022. doi: 10.1021/acsnano.8b07783. Epub 2019 Mar 1.

Abstract

Superparamagnetism exists only in nanocrystals, and to endow micro/macro-materials with superparamagnetism, superparamagnetic nanoparticles have to be assembled into complex materials. Most techniques currently used to produce such assemblies are inefficient in terms of time and material. Herein, we used evaporation-guided assembly to produce superparamagnetic supraparticles by drying ferrofluid droplets on a superamphiphobic substrate in the presence of an external magnetic field. By tuning the concentration of ferrofluid droplets and controlling the magnetic field, barrel-like, cone-like, and two-tower-like supraparticles were obtained. These assembled supraparticles preserved the superparamagnetism of the original nanoparticles. Moreover, other colloids can easily be integrated into the ferrofluid suspension to produce, by co-assembly, anisotropic binary supraparticles with additional functions. Additionally, the magnetic and anisotropic nature of the resulting supraparticles was harnessed to prepare magnetically actuable microswimmers.

Keywords: anisotropic microparticles; evaporation-guided self-assembly; superamphiphobic surfaces; superparamagnetic nanoparticles; supraparticles.

Publication types

  • Research Support, Non-U.S. Gov't