Experiments on dynamic behaviour of a Dacron aortic graft in a mock circulatory loop

J Biomech. 2019 Mar 27:86:132-140. doi: 10.1016/j.jbiomech.2019.01.053. Epub 2019 Feb 12.

Abstract

Woven Dacron grafts are currently used for the surgical treatment of aortic aneurysm and acute dissection, two otherwise fatal pathologies when aortic wall rupture occurs. While Dacron is chosen for aortic grafts because of characteristics such as biocompatibility and durability, few data are available about the dynamic response of Dacron prosthetic devices and about their side effects on the cardiovascular system. In this study, a Dacron graft was subjected to physiological flow conditions in a specifically-developed mock circulatory loop. Experiments were conducted at different physiological pulsation-per-minute rates. Results show that, in comparison to an aortic segment of the same length, the prosthesis is extremely stiffer circumferentially, thus limiting the dynamical radial expansion responsible for the Windkessel effect in human arteries. The prosthesis is instead excessively compliant in the axial direction and develops preferentially bending oscillations. This very different dynamic behaviour with respect to the human aorta can alter cardiovascular pressure and flow dynamics resulting in long-term implant complications.

Keywords: Aortic graft; Dacron graft; Dynamic behaviour; Experiment; Mock circulatory loop.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aorta / surgery
  • Arterial Pressure / physiology
  • Blood Vessel Prosthesis / adverse effects*
  • Blood Vessel Prosthesis / standards
  • Humans
  • Hydrodynamics*
  • Models, Cardiovascular
  • Polyethylene Terephthalates*

Substances

  • Polyethylene Terephthalates