The use of tail-anchored protein chimeras to enhance liposomal cargo delivery

PLoS One. 2019 Feb 22;14(2):e0212701. doi: 10.1371/journal.pone.0212701. eCollection 2019.

Abstract

Background: Liposomes are employed as drug delivery vehicles offering a beneficial pharmacokinetic/distribution mechanism for in vivo therapeutics. Therapeutic liposomes can be designed to target specific cell types through the display of epitope-specific targeting peptides on their surface. The majority of peptides are currently attached by chemical modification of lipid constituents. Here we investigate an alternative and novel method of decorating liposomes with targeting ligand, using remotely and spontaneously inserting chimeric tail-anchored membrane (TA) proteins to drug loaded liposomes.

Methods and results: An artificial TA protein chimera containing the transmembrane domain from the spontaneously inserting TA protein cytochrome b5 (Cytb5) provided a robust membrane tether for the incorporation of three different targeting moieties into preformed liposomes. The moieties investigated were the transactivator of transcription (TAT) peptide, the EGF-receptor binding sequence GE11 and the placental and tumour homing ligand CCGKRK. In all cases, TA protein insertion neither significantly altered the size of the liposomes nor reduced drug loading. The efficacy of this novel targeted delivery system was investigated using two human cell lines, HeLa M and BeWo. Short term incubation with one ligand-modified TA chimera, incorporating the TAT peptide, significantly enhanced liposomal delivery of the encapsulated carboxyfluorescein reporter.

Conclusion: The Cytb5 TA was successfully employed as a membrane anchor for the incorporation of the desired peptide ligands into a liposomal drug delivery system, with minimal loss of cargo during insertion. This approach therefore provides a viable alternative to chemical conjugation and its potential to accommodate a wider range of targeting ligands may provide an opportunity for enhancing drug delivery.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cytochromes b5* / chemistry
  • Cytochromes b5* / genetics
  • Cytochromes b5* / pharmacology
  • HeLa Cells
  • Humans
  • Liposomes
  • Protein Domains
  • Recombinant Fusion Proteins* / chemistry
  • Recombinant Fusion Proteins* / genetics
  • Recombinant Fusion Proteins* / pharmacology

Substances

  • Liposomes
  • Recombinant Fusion Proteins
  • Cytochromes b5