Ex vivo real-time monitoring of volatile metabolites resulting from nasal odorant metabolism

Sci Rep. 2019 Feb 21;9(1):2492. doi: 10.1038/s41598-019-39404-x.

Abstract

Odorant-metabolizing enzymes are critically involved in the clearance of odorant molecules from the environment of the nasal neuro-olfactory tissue to maintain the sensitivity of olfactory detection. Odorant metabolism may also generate metabolites in situ, the characterization and function of which in olfaction remain largely unknown. Here, we engineered and validated an ex vivo method to measure odorant metabolism in real-time. Glassware containing an explant of rat olfactory mucosa was continuously flushed with an odorant flow and was coupled to a proton transfer reaction-mass spectrometer for volatile compound analysis. Focusing on carboxylic esters and diketone odorants, we recorded the metabolic uptake of odorants by the mucosa, concomitantly with the release of volatile odorant metabolites in the headspace. These results significantly change the picture of real-time in situ odorant metabolism and represent a new step forward in the investigation of the function of odorant metabolites in the peripheral olfactory process. Our method allows the systematic identification of odorant metabolites using a validated animal model and permits the screening of olfactory endogenously produced chemosensory molecules.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Esters / chemistry
  • Gas Chromatography-Mass Spectrometry
  • Ketones / chemistry
  • Metabolomics / methods*
  • Models, Animal
  • Nasal Mucosa / chemistry*
  • Odorants / analysis*
  • Rats
  • Rats, Wistar

Substances

  • Esters
  • Ketones