Euonymus alatus and its monomers alleviate liver fibrosis both in mice and LX2 cells by blocking TβR1-Smad2/3 and TNF-α-NF-κB pathways

Am J Transl Res. 2019 Jan 15;11(1):106-119. eCollection 2019.

Abstract

This study aimed to investigate the protective effects, effective constituents and preliminary mechanisms of Euonymus alatus on liver fibrosis and screen new high-efficacy drug for fibrosis. 112 male C57BL/6 mice were randomly divided into 14 groups: control group (CG), CCL4 group (CTG), low/medium/high dose of Euonymus alatus ethanol extracts (EAE), catechin (CA), dihydroquercetin (DHQ) and kaempferol (KA) groups. The study lasted for 30 days by injecting CCL4 in peritoneal cavity to make fibrosis model, all mice were sacrificed to observe morphological changes and collagenous fiber by HE and Masson staining, to test liver index, ALT, AST, to measure the expression of α-SMA and collagen I by immunohistochemistry and western blotting, to discuss the pathways of TβR1-Smad2/3 and TNF-α-NF-κB by WB and Elisa; after being evaluated the efficacy, anti-fibrosis drug of highest efficacy was chosen to repeat these indexes in human hepatic stellate cells-LX2. Results showed that EAE/CA/DHQ/KA prevented increases in liver index, ALT, AST, α-SMA, collagen I, TβR1, Smad2/3, TNF-α and p-NF-κB caused by CCL4 in dose-dependence, they also improved the liver morphology, decreased inflammatory cell infiltration and collagenous fiber in dose-dependence, CA' efficacy was best in mice; in LX-2, CA also decreased the expression of α-SMA, collagen I, TGF-β, Smad2/3. All findings suggested that Euonymus alatus could alleviate liver inflammation and fibrosis by inhibiting TβR1-Smad2/3 and TNF-α-NF-κB pathways, flavonoid were effective constituents and catechin was screened as a new star for its best performance.

Keywords: Euonymus alatus; catechin; collagen I; dihydroquercetin; hepatic fibrosis; kaempferol.