The rate of fluid shear stress is a potent regulator for the differentiation of mesenchymal stem cells

J Cell Physiol. 2019 Sep;234(9):16312-16319. doi: 10.1002/jcp.28296. Epub 2019 Feb 19.

Abstract

We have previously demonstrated that the rate of fluid shear stress (ΔSS) can manipulate the fate of mesenchymal stem cells (MSCs) to osteogenic or chondrogenic cells. However, whether ΔSS is comparable to other two means of induction medium and substrate stiffness that have been proven to be potent in differentiation control is unknown. In this study, we subjected MSCs to 1-7 days of osteogenic or chondrogenic chemical induction, or 1-4 days of 37 or 86 kPa of substrate stiffness induction, followed by 20 min of Fast ΔSS (0-0') or Slow ΔSS (0-2'), which is a laminar FSS that linearly increased from 0 to 10 dyn/cm 2 in 0 (Fast) or 2 min (Slow) and maintained at 10 dyn/cm 2 for a total of 20 min. We found that 20 min of ΔSS could compete with 5 days' chemical and 2 days' substrate stiffness inductions. Our study confirmed that ΔSS is a powerful tool to control the differentiation of MSCs, which stressed the possible application in MSCs linage specification.

Keywords: chondrogenic differentiation; growth factors; mechanical stimulation; osteogenic differentiation; stem cells.