Reductive reactions via excess Li in mixture electrolytes of Li ion batteries: an ab initio molecular dynamics study

Phys Chem Chem Phys. 2019 Mar 6;21(10):5489-5498. doi: 10.1039/c8cp04907f.

Abstract

The electro-reduction of battery electrolytes plays a critical role in the formation of solid-electrolyte interphase (SEI) layers on the surfaces of negative electrodes. These layers have a significant influence on the performance of rechargeable battery cells. Using ab initio molecular dynamics, we demonstrate the electro-reduction of mixture electrolytes computationally by adding a certain number of excess Li+ first to form the solvation structure and the same number of electrons later for reductive reactions. Our method enables direct observations of the ring opening of one cyclic carbonate followed by merging with another solvent molecule as well as gas generation. When we examined FEC- and EC-based electrolytes, we were able to observe the differences in terms of reaction products. In particular, the two gaseous products that are generated the most are in accordance with recent in situ gas measurements in the literature. The different reaction products of each electrolyte also match well with the SEI constituents reported experimentally. By tracing reaction pathways, we found that Li+ ions facilitate many otherwise difficult electrochemical reactions, presumably by lowering energy barriers. We also found that the excess Li+ forms cationic clusters of Li2PF6+, which enable the reductive decomposition of salt anions and which do not occur easily simply by increasing the electronic occupation. Based on the reaction products of FEC-based electrolytes, here we propose a possible mechanism of polymerization through aldehyde intermediates that are known to bond with surrounding radical anions.