Evolution of fragment size distributions from the crushing of granular materials

Phys Rev E. 2019 Jan;99(1-1):012904. doi: 10.1103/PhysRevE.99.012904.

Abstract

We study fragment size distributions after crushing single and many particles under uniaxial compression inside a cylindrical container by means of numerical simulations. Under the assumption that breaking goes through the bulk of the particle we obtain the size distributions of fragments for both cases after large displacements. For the single-particle crushing, this fragmentation mechanism produces a log-normal size distribution, which deviates from the power-law distribution of fragment sizes for the packed bed. We show that as the breaking process evolves, a power-law dependency on the displacement is present for the single grain, while for the many-grains system, the distribution converges to a steady state. We further investigate the force networks and the average coordination number as a function of the particle size, which gives information about the origin of the power-law distributions for the granular assembly under uniaxial compression.