Printed Microwave Metamaterial-Antenna Circuitries on Nickel Oxide Polymerized Palm Fiber Substrates

Sci Rep. 2019 Feb 18;9(1):2174. doi: 10.1038/s41598-019-39736-8.

Abstract

In this paper, the novelty of exploring the applications of the Iraqi Palm Tree Remnants (IPTR) mixed with Nickel Oxide Nanoparticles (NONP) hosted in Polyethylene (PE), called INP substrates, is utilized by printing metamaterial (MTM) based high gain microwave antennas on them. The proposed INP substrates are mainly created from pressed flexible organic fibers to suite the ink jet printing technologies. The complex relative constitutive parameters are characterized in terms of permittivity (ε) and permeability (μ) within the frequency range from 2 GHz up to 6 GHz using an open end dielectric probe and a T-stub transmission line technique. To validate the feasibility of the INP substrates, a very fine antenna structure of based a miniaturized Hilbert MTM based dipoles is printed on. A material printer with Sliver Nanoparticles Conductive Ink (SNPCI) is used to print the antenna structure. Commercial software packages, CST Microwave Studio (MWS) and Ansys High Frequency Structure Simulator (HFSS), are used to simulate the proposed antenna based on the measured constitutive parameters. A negligible difference is found between the measured and simulated results. Finally, an attractive effect on the retrieved constitutive parameters of the proposed MTM is found due to the proposed INP substrate.