Identifying New AMP-Activated Protein Kinase Inhibitors That Protect against Ischemic Brain Injury

ACS Chem Neurosci. 2019 May 15;10(5):2345-2354. doi: 10.1021/acschemneuro.8b00654. Epub 2019 Feb 22.

Abstract

We recently reported that AMP-activated protein kinase (AMPK) contributes to zinc-induced neuronal death by inducing Bim, a pro-apoptotic Bcl-2 homology domain 3-only protein, in a liver kinase B1 (LKB1)-dependent manner. Current data suggest AMPK plays key roles in excitotoxicity and ischemic brain injury, with zinc neurotoxicity representing at least one mechanism of ischemic neuronal death. Inhibition of AMPK could be a viable therapeutic strategy to prevent ischemic brain injury following stroke. This prompted our search for novel inhibitors of AMPK activity and zinc-induced neuronal death using cultured mouse cortex and a rat model of brain injury after middle cerebral artery occlusion (MCAO). In structure-based virtual screening, 118 compounds were predicted to bind the active site of AMPK α2, and 40 showed in vitro AMPK α2 inhibitory activity comparable to compound C (a well-known, potent AMPK inhibitor). In mouse cortical neuronal cultures, 7 of 40 compound reduced zinc-induced neuronal death at levels comparable to compound C. Ultimately, only agents 2G11 and 1H10 significantly attenuated various types of neuronal death, including oxidative stress, excitotoxicity, and apoptosis. When administered as intracerebroventricular injections prior to permanent MCAO in rats, 2G11 and 1H10 reduced brain infarct volumes, whereas compound C did not. Therefore, these novel AMPK inhibitors could be drug development candidates to treat stroke.

Keywords: AMPK; apoptosis; brain ischemia; excitotoxicity; oxidative stress; zinc neurotoxicity.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • AMP-Activated Protein Kinases / antagonists & inhibitors*
  • AMP-Activated Protein Kinases / metabolism
  • Animals
  • Apoptosis / drug effects
  • Brain Ischemia / prevention & control*
  • Disease Models, Animal
  • Drug Discovery
  • Infarction, Middle Cerebral Artery
  • Inhibitory Concentration 50
  • Mice
  • Protein Kinase Inhibitors / isolation & purification
  • Protein Kinase Inhibitors / pharmacology*
  • Rats

Substances

  • Protein Kinase Inhibitors
  • AMP-Activated Protein Kinases