Highly Sensitive, Selective, and Flexible NO2 Chemiresistors Based on Multilevel Structured Three-Dimensional Reduced Graphene Oxide Fiber Scaffold Modified with Aminoanthroquinone Moieties and Ag Nanoparticles

ACS Appl Mater Interfaces. 2019 Mar 6;11(9):9309-9316. doi: 10.1021/acsami.8b20462. Epub 2019 Feb 21.

Abstract

Highly sensitive, selective, and room-temperature-performing gas sensors have always been the pursuit in the sensing field for practical applications. However, the existing gas sensors can seldom satisfy the aforementioned requirements. Here, we integrate zero-dimensional Ag nanoparticles (AgNPs), one-dimensional polymer fibers, and two-dimensional aminoanthroquinone-functionalized reduced graphene oxide (AQRGO) sheets into a three-dimensional sensing scaffold (AgNP-3D-AQRGO) for high-performance NO2 sensing. The AQ moieties and AgNPs are decorated onto the RGO sheets through a wet chemical route. Electrospinning and self-assembly techniques are employed to assemble the polymer fibers and the functional RGO sheets into a three-dimensional scaffold. The resulting AgNP-3D-AQRGO-based gas sensor can perform at room temperature and exhibits excellent sensing performance for NO2, including an ultrahigh sensitivity (10.3 ppm-1), an ultralow limit of detection (0.6 ppb), and an extremely remarkable selectivity to solely NO2 molecules. Furthermore, the sensor is also highly flexible, demonstrating great potential for portable and real-time monitoring of toxic gas in personal mobile electronics.

Keywords: NO2; RGO; flexible; gas sensor; multilevel structures.