W x NbMoTa Refractory High-Entropy Alloys Fabricated by Laser Cladding Deposition

Materials (Basel). 2019 Feb 11;12(3):533. doi: 10.3390/ma12030533.

Abstract

WxNbMoTa refractory high-entropy alloys with four different tungsten concentrations (x = 0, 0.16, 0.33, 0.53) were fabricated by laser cladding deposition. The crystal structures of WxNbMoTa alloys are all a single-phase solid solution of the body-centered cubic (BCC) structure. The size of the grains and dendrites are 20 μm and 4 μm on average, due to the rapid solidification characteristics of the laser cladding deposition. These are much smaller sizes than refractory high-entropy alloys fabricated by vacuum arc melting. In terms of integrated mechanical properties, the increase of the tungsten concentration of WxNbMoTa has led to four results of the Vickers microhardness, i.e., Hv = 459.2 ± 9.7, 476.0 ± 12.9, 485.3 ± 8.7, and 497.6 ± 5.6. As a result, NbMoTa alloy shows a yield strength (σb) and compressive strain (εp) of 530 Mpa and 8.5% at 1000 °C, leading to better results than traditional refractory alloys such as T-111, C103, and Nb-1Zr, which are commonly used in the aerospace industry.

Keywords: WxNbMoTa; laser cladding deposition; rapid solidification; refractory high-entropy alloy.