Adiponectin Suppresses Human Pancreatic Cancer Growth through Attenuating the β-Catenin Signaling Pathway

Int J Biol Sci. 2019 Jan 1;15(2):253-264. doi: 10.7150/ijbs.27420. eCollection 2019.

Abstract

Adipokines are emerging as a link between obesity and obesity-related cancers, including pancreatic cancer. Adiponectin is an abundant adipokine with pleiotropic beneficial roles in metabolic disorders. Low adiponectin levels are commonly observed in human obesity and have been associated with increased pancreatic cancer risk in prospective epidemiologic studies. Here, we investigated the direct effect of adiponectin on human pancreatic cancer in vitro and in vivo. Our results showed that adiponectin treatment significantly inhibited the proliferation of human pancreatic cancer cells. Knockdown of adiponectin receptors completely eliminated the antiproliferation effect of adiponectin and markedly promoted the growth of human pancreatic cancer xenografts in nude mice. Further analysis revealed that adiponectin blocked the phosphorylation/inactivation of GSK-3β, suppressed the intracellular accumulation of β-catenin, reduced the expression of cyclin D1, and consequently caused cell cycle accumulation at the G0-G1 phase in pancreatic cancer cells. Adiponectin-mediated attenuation of cell proliferation was abrogated by the GSK-3β inhibitor. In addition, a microarray analysis revealed that adiponectin also downregulated the expression of TCF7L2, a coactivator of β-catenin, at the transcriptional level in pancreatic cancer cells. These results indicated that the protective role of adiponectin against human pancreatic cancer might be attributed to its attenuating effect on the β-catenin signaling pathway. Taken together, our findings support a causal link between hypoadiponectinemia and increased pancreatic cancer risk, and suggest that activating adiponectin signaling could be a novel therapeutic strategy for obesity-related pancreatic cancer.

Keywords: GSK-3β; adiponectin; cell proliferation; pancreatic cancer; β-catenin.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adiponectin / pharmacology*
  • Animals
  • Cell Cycle / drug effects
  • Cell Line, Tumor
  • Cell Proliferation / drug effects
  • Cell Proliferation / genetics
  • Computational Biology
  • Cyclin D1 / metabolism
  • Glycogen Synthase Kinase 3 beta / metabolism
  • Humans
  • Immunohistochemistry
  • Mice
  • Mice, Nude
  • Pancreatic Neoplasms / genetics
  • Pancreatic Neoplasms / metabolism*
  • Real-Time Polymerase Chain Reaction
  • Receptors, Adiponectin / genetics
  • Receptors, Adiponectin / metabolism*
  • Transcription Factor 7-Like 2 Protein / genetics
  • Transcription Factor 7-Like 2 Protein / metabolism
  • Xenograft Model Antitumor Assays
  • beta Catenin / metabolism*

Substances

  • Adiponectin
  • Receptors, Adiponectin
  • Transcription Factor 7-Like 2 Protein
  • beta Catenin
  • Cyclin D1
  • Glycogen Synthase Kinase 3 beta