Molecular Electronics Including Temperature Effects Based on Dyes Pigments

J Nanosci Nanotechnol. 2019 Jun 1;19(6):3631-3636. doi: 10.1166/jnn.2019.16142.

Abstract

In this work we used the Density Functional Theory to study the thermodynamic properties from Brazilein (BZE) and Brazilin (BZI) molecules, main pigments responsible for the red color from Brazil wood. We did a comparison between the two dyes to then know which dye has better resistance to temperature (T ) and external electric field (E) values, aiming their potential to possible applications in solar cells, as excitons trainers. We have found that the BZE molecule becomes less stable after a temperature known as degradation temperature, and therefore enters oxidation state. However, BZE is more stable and more resistant to high temperatures. With respect to the applied external electric field, we find that BZE is more reactive to almost all the applied electric fields, thus more easily converted into energy in the form of electrical work.