Self-Assembling Micelles Based on an Intrinsically Disordered Protein Domain

J Am Chem Soc. 2019 Mar 13;141(10):4291-4299. doi: 10.1021/jacs.8b10688. Epub 2019 Feb 26.

Abstract

The self-assembly of micellar structures from diblock polymers that contain hydrophilic and hydrophobic domains has been of great interest for the encapsulation of drugs and other hydrophobic molecules. While most commercially used surfactants are derived from hydrocarbon sources, there have been recent efforts to replace these with biodegradable, nontoxic, biologically synthesized alternatives. Previous examples have primarily examined naturally occurring self-assembling proteins, such as silk and elastin-like sequences. Herein, we describe a new series of fusion proteins that have been developed to self-assemble spontaneously into stable micelles that are 27 nm in diameter after enzymatic cleavage of a solubilizing protein tag. The sequences of the proteins are based on a human intrinsically disordered protein, which has been appended with a hydrophobic segment. The micelles were found to form across a broad range of pH, ionic strength, and temperature conditions, with critical micelle concentration (CMC) values in the low micromolar range, 3 orders of magnitude lower than the CMC of commonly used surfactant sodium dodecyl sulfate (SDS). The reported micelles were found to solubilize hydrophobic metal complexes and organic molecules, suggesting their potential suitability for catalysis and drug delivery applications. Furthermore, the inherent flexibility in the design of these protein sequences enables the encoding of additional functionalities for many future applications. Overall, this work represents a new biomolecular alternative to traditional surfactants that are based on nonrenewable and poorly biodegradable hydrocarbon sources.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Video-Audio Media

MeSH terms

  • Amino Acid Sequence
  • Antifungal Agents / chemistry
  • Escherichia coli / genetics
  • Hydrogen-Ion Concentration
  • Hydrophobic and Hydrophilic Interactions
  • Intrinsically Disordered Proteins / chemistry*
  • Intrinsically Disordered Proteins / genetics
  • Micelles*
  • Photosensitizing Agents / chemistry
  • Porphyrins / chemistry
  • Protein Domains
  • Protein Engineering
  • Recombinant Fusion Proteins / chemistry*
  • Recombinant Fusion Proteins / genetics
  • Solubility
  • Strobilurins / chemistry
  • Temperature

Substances

  • 5,10,15,20-tetraphenylporphyrin
  • Antifungal Agents
  • Intrinsically Disordered Proteins
  • Micelles
  • Photosensitizing Agents
  • Porphyrins
  • Recombinant Fusion Proteins
  • Strobilurins
  • pyrachlostrobin