Heterogeneity of Activity-Induced Sodium Transients between Astrocytes of the Mouse Hippocampus and Neocortex: Mechanisms and Consequences

J Neurosci. 2019 Apr 3;39(14):2620-2634. doi: 10.1523/JNEUROSCI.2029-18.2019. Epub 2019 Feb 8.

Abstract

Activity-related sodium transients induced by glutamate uptake represent a special form of astrocyte excitability. Astrocytes of the neocortex, as opposed to the hippocampus proper, also express ionotropic glutamate receptors, which might provide additional sodium influx. We compared glutamate-related sodium transients in astrocytes and neurons in slices of the neocortex and hippocampus of juvenile mice of both sexes, using widefield and multiphoton imaging. Stimulation of glutamatergic afferents or glutamate application induced sodium transients that were twice as large in neocortical as in hippocampal astrocytes, despite similar neuronal responses. Astrocyte sodium transients were reduced by ∼50% upon blocking NMDA receptors in the neocortex, but not hippocampus. Neocortical, but not hippocampal, astrocytes exhibited marked sodium increases in response to NMDA. These key differences in sodium signaling were also observed in neonates and in adults. NMDA application evoked local calcium transients in processes of neocortical astrocytes, which were dampened upon blocking sodium/calcium exchange (NCX) with KB-R7943 or SEA0400. Mathematical computation based on our data predict that NMDA-induced sodium increases drive the NCX into reverse mode, resulting in calcium influx. Together, our study reveals a considerable regional heterogeneity in astrocyte sodium transients, which persists throughout postnatal development. Neocortical astrocytes respond with much larger sodium elevations to glutamatergic activity than hippocampal astrocytes. Moreover, neocortical astrocytes experience NMDA-receptor-mediated sodium influx, which hippocampal astrocytes lack, and which drives calcium import through reverse NCX. This pathway thereby links sodium to calcium signaling and represents a new mechanism for the generation of local calcium influx in neocortical astrocytes.SIGNIFICANCE STATEMENT Astrocyte calcium signals play a central role in neuron-glia interaction. Moreover, activity-related sodium transients may represent a new form of astrocyte excitability. Here we show that activation of NMDA receptors results in prominent sodium transients in neocortical, but not hippocampal, astrocytes in the mouse brain. NMDA receptor activation is accompanied by local calcium signaling in processes of neocortical astrocytes, which is augmented by sodium-driven reversal of the sodium/calcium exchanger. Our data demonstrate a significant regional heterogeneity in the magnitude and mechanisms of astrocyte sodium transients. They also suggest a close interrelation between NMDA-receptor-mediated sodium influx and calcium signaling through the reversal of sodium/calcium exchanger, thereby establishing a new pathway for the generation of local calcium signaling in astrocyte processes.

Keywords: astrocytes; glutamate; heterogeneity; ion signaling; sodium; transporter.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Astrocytes / drug effects
  • Astrocytes / physiology*
  • CA1 Region, Hippocampal / cytology
  • CA1 Region, Hippocampal / drug effects
  • CA1 Region, Hippocampal / physiology*
  • Calcium Signaling / drug effects
  • Calcium Signaling / physiology
  • Female
  • Male
  • Mice
  • Mice, Inbred BALB C
  • Neocortex / cytology
  • Neocortex / drug effects
  • Neocortex / physiology*
  • Organ Culture Techniques
  • Sodium-Calcium Exchanger / antagonists & inhibitors
  • Sodium-Calcium Exchanger / physiology*
  • Thiourea / analogs & derivatives
  • Thiourea / pharmacology

Substances

  • 2-(2-(4-(4-nitrobenzyloxy)phenyl)ethyl)isothiourea methanesulfonate
  • Sodium-Calcium Exchanger
  • Thiourea