Transition from stochastic events to deterministic ensemble average in electron transfer reactions revealed by single-molecule conductance measurement

Proc Natl Acad Sci U S A. 2019 Feb 26;116(9):3407-3412. doi: 10.1073/pnas.1814825116. Epub 2019 Feb 8.

Abstract

Electron transfer reactions can now be followed at the single-molecule level, but the connection between the microscopic and macroscopic data remains to be understood. By monitoring the conductance of a single molecule, we show that the individual electron transfer reaction events are stochastic and manifested as large conductance fluctuations. The fluctuation probability follows first-order kinetics with potential dependent rate constants described by the Butler-Volmer relation. Ensemble averaging of many individual reaction events leads to a deterministic dependence of the conductance on the external electrochemical potential that follows the Nernst equation. This study discloses a systematic transition from stochastic kinetics of individual reaction events to deterministic thermodynamics of ensemble averages and provides insights into electron transfer processes of small systems, consisting of a single molecule or a small number of molecules.

Keywords: electron transfer reactions; ensemble averaging; molecular electronics; single molecule; stochastic electron transfer.

Publication types

  • Research Support, Non-U.S. Gov't