Alkanethiolate-Capped Palladium Nanoparticles for Regio- and Stereoselective Hydrogenation of Allenes

Catalysts. 2018 Oct;8(10):428. doi: 10.3390/catal8100428. Epub 2018 Sep 29.

Abstract

Colloidal Pd nanoparticles capped with octanethiolate ligands have previously shown an excellent selectivity toward the mono-hydrogenation of both isolated and conjugated dienes to internal alkenes. This paper reports an efficient stereoselective mono-hydrogenation of cumulated dienes (allenes) to either Z or E olefinic isomers, depending on the substitution pattern around C=C bonds. Kinetic studies indicate that the reaction progresses through the hydrogenation of less hindered C=C bonds to produce internal Z olefinic isomers. In the cases of di-substitued olefinic products, this initial hydrogenation step is followed by the subsequent isomerization of Z to E isomers. In contrast, the slow isomerization of Z to E isomers for tri-substituted olefinic products results in the preservation of Z stereochemistry. The high selectivity of Pd nanoparticles averting an additional hydrogenation is steered from the controlled electronic and geometric properties of the Pd surface, which are the result of thiolate-induced partial poisoning and surface crowding, respectively. The high activity of colloidal Pd nanoparticle catalysts allows the reactions to be completed at room temperature and atmospheric pressure.

Keywords: allene; catalysis; cumulated diene; ligand-capped; nanoparticle; selective hydrogenation; semi-heterogeneous.