Visual simulators replicate vision with multifocal lenses

Sci Rep. 2019 Feb 7;9(1):1539. doi: 10.1038/s41598-019-38673-w.

Abstract

Adaptive optics (AO) visual simulators based on deformable mirrors, spatial light modulators or optotunable lenses are increasingly used to simulate vision through different multifocal lens designs. However, the correspondence of this simulation with that obtained through real intraocular lenses (IOLs) tested on the same eyes has not been, to our knowledge, demonstrated. We compare through-focus (TF) optical and visual quality produced by real multifocal IOLs (M-IOLs) -bifocal refractive and trifocal diffractive- projected on the subiect's eye with those same designs simulated with a spatial light modulator (SLM) or an optotunable lens working in temporal multiplexing mode (SimVis technology). Measurements were performed on 7 cyclopleged subjects using a custom-made multichannel 3-active-optical-elements polychromatic AO Visual Simulator in monochromatic light. The same system was used to demonstrate performance of the real IOLs, SLM and SimVis technology simulations on bench using double-pass imaging on an artificial eye. Results show a general good correspondence between the TF performance with the real and simulated M-IOLs, both optically (on bench) and visually (measured visual acuity in patients). We demonstrate that visual simulations in an AO environment capture to a large extent the individual optical and visual performance obtained with real M-IOLs, both in absolute values and in the shape of through-focus curves.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Eyeglasses*
  • Humans
  • Photic Stimulation
  • Refraction, Ocular
  • Vision Tests / methods*
  • Visual Acuity