2.19 kW narrow linewidth FBG-based MOPA configuration fiber laser

Opt Express. 2019 Feb 4;27(3):3136-3145. doi: 10.1364/OE.27.003136.

Abstract

In this paper, we demonstrated a monolithic fiber-Bragg-grating-based (FBG-based) master oscillator power amplification configuration fiber laser with a narrow linewidth at high-power level. Several approaches were implemented to reduce the seed laser linewidth and the magnification of spectrum broadening in order to achieve a narrow output linewidth. The narrow seed laser linewidth was obtained by restricting the reflection bandwidth of the FBG. To reduce the magnification of spectrum broadening, a backward pumping scheme was employed in the amplifier stage after its capacity to suppress laser spectrum broadening was preliminarily investigated experimentally. Further, by intentionally shortening the length of the active fiber in the amplifier and sharing the backward pumping power with the oscillator, the spectrum broadening was further inhibited without sacrificing optical efficiency. A maximum output power of 2.19 kW was achieved with a 3 dB spectrum bandwidth of only 86.5 pm. The beam quality at the maximum power was measured to be M2~1.46. No sign of transverse mode instability was shown during the experiments.