Multi-tenant secret-key assignment over quantum key distribution networks

Opt Express. 2019 Feb 4;27(3):2544-2561. doi: 10.1364/OE.27.002544.

Abstract

Quantum key distribution (QKD) networks are promising to progress towards widespread practical deployment over existing fiber infrastructures in the near future. Given the high cost and difficulty of deploying QKD networks, multi-tenancy becomes promising to improve cost efficiency for future QKD networks. In a multi-tenant QKD network, multiple QKD tenants can share the same QKD network infrastructure to obtain secret keys for securing their data transfer. Since the secret-key resources are finite and precious in QKD networks, how to achieve efficient multi-tenant secret-key assignment (MTKA) to satisfy the secret-key demands of multiple QKD tenants over QKD networks becomes a significant problem. In this regard, this study addresses the MTKA problem over QKD networks. A new multi-tenant QKD network architecture is proposed based on software defined networking (SDN) and quantum key pool (QKP) techniques. A secret-key rate sharing scheme is presented and a heuristic algorithm is designed to implement efficient MTKA over QKD networks. A new performance metric, namely matching degree (MD) that reflects the balance between QKD network secret-key resources and QKD tenant requests, is defined and evaluated. Simulation studies indicate that high QKD tenant requests accommodation and efficient secret-key resource usage can be achieved via maximizing the value of MD.