Third generation impedimetric sensor employing direct electron transfer type glucose dehydrogenase

Biosens Bioelectron. 2019 Mar 15:129:189-197. doi: 10.1016/j.bios.2019.01.018. Epub 2019 Jan 16.

Abstract

Faradaic electrochemical impedance spectroscopy (faradaic EIS) is an attractive measurement principle for biosensors. However, there have been no reports on sensors employing direct electron transfer (DET)-type redox enzymes based on faradaic EIS principle. In this study, we have attempted to construct the 3rd-generation faradaic enzyme EIS sensor, which used DET-type flavin adenine dinucleotide (FAD) dependent glucose dehydrogenase (GDH) complex, to elucidate its characteristic properties as well as to investigate its potential application as the future immunosensor platform. The gold disk electrodes (GDEs) with DET-type FADGDH prepared using self-assembled monolayer (SAM) showed the glucose concentration dependent impedance change, which was confirmed by the change in the charge transfer resistance (Rct). The Δ(1/Rct) values were also affected by DC bias potential and the length of SAM. Based on the Nyquist plot and Bode plot simulations, glucose sensing by imaginary impedance monitoring under fixed frequency (5 mHz) was carried out, revealing the higher sensitivity at low glucose concentration with wider linear range (0.02-0.2 mM). Considering this high sensitivity toward glucose, the 3rd-generation faradaic enzyme EIS sensor would provide alternative platform for future impedimetric immunosensing system, which does not use redox probe.

Keywords: Charge transfer resistance; Direct electron transfer; FAD dependent glucose dehydrogenase complex; Faradaic electrochemical impedance spectroscopy; Imaginary impedance monitoring; Impedimetric biosensor.

MeSH terms

  • Bacteria / enzymology
  • Biosensing Techniques / methods*
  • Electric Impedance
  • Electrodes
  • Electron Transport
  • Flavin-Adenine Dinucleotide / chemistry
  • Glucose / analysis*
  • Glucose 1-Dehydrogenase / chemistry*
  • Gold / chemistry

Substances

  • Flavin-Adenine Dinucleotide
  • Gold
  • Glucose 1-Dehydrogenase
  • Glucose