Global meridional eddy heat transport inferred from Argo and altimetry observations

Sci Rep. 2019 Feb 4;9(1):1345. doi: 10.1038/s41598-018-38069-2.

Abstract

Proportion and pathways of the eddy-induced heat transport are critical in maintaining world's ocean and climate states. However, an observation-based three-dimensional picture of how oceanic eddies contribute to the global heat transport is yet not quantitatively specified, particularly due to insufficiency of data. Here, using refined methods, we have achieved this goal by analyzing millions of high-quality Argo hydrographic profiles and high-resolution satellite altimetric data. We first presented the spatial differences of individual eddies by reconstructing 254 representative eddies all over the ocean, and then calculated heat fluxes associated with eddies in 5° × 5° boxes. It is revealed that all parameters of eddies vary significantly with both latitudes and longitudes, which is crucial in yielding spatially varying heat fluxes and transports. The eddies not only transport heat towards high latitudes (down-gradient), but also towards low latitudes (up-gradient), particularly at subsurface layers of mid-latitude northern Pacific Ocean and low-latitude Atlantic Ocean. The eddy heat transport is mainly confined in the upper 1000 m of the western part and mid-latitudes of the world's ocean basins, coinciding with maximum meridional temperature gradients. It peaks at 0.8 PW and 0.3 PW (1 PW = 1015 W) at 45°S and 35°N, respectively, stronger than previous estimates based on model results, and accounts for about one half and one third of the estimated total oceanic heat transport at the same latitudes, respectively. In any location except for the areas associated with the Antarctic Circumpolar Current, the eddy stirring component is distinctly (1-10 times) larger than the eddy trapping component.