Characterizing Transcriptional Interference between Converging Genes in Bacteria

ACS Synth Biol. 2019 Mar 15;8(3):466-473. doi: 10.1021/acssynbio.8b00477. Epub 2019 Feb 14.

Abstract

Antisense transcription is common in naturally occurring genomes and is increasingly being used in synthetic genetic circuitry as a tool for gene expression control. Mutual influence on the expression of convergent genes can be mediated by antisense RNA effects and by transcriptional interference (TI). We aimed to quantitatively characterize long-range TI between convergent genes with untranslated intergenic spacers of increasing length. After controlling for antisense RNA-mediated effects, which contributed about half of the observed total expression inhibition, the TI effect was modeled. To achieve model convergence, RNA polymerase processivity and collision resistance were assumed to be modulated by ribosome trailing. The spontaneous transcription termination rate in regions of untranslated DNA was experimentally determined. Our modeling suggests that an elongating RNA polymerase with a trailing ribosome is about 13 times more likely to resume transcription than an opposing RNA polymerase without a trailing ribosome, upon head-on collision of the two.

Keywords: Escherichia coli; antisense transcription; gene regulation; mathematical modeling; transcriptional interference.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • DNA-Directed RNA Polymerases / genetics
  • Escherichia coli / genetics*
  • Fluorescent Dyes / metabolism
  • Gene Expression Regulation, Bacterial*
  • Genes, Bacterial / genetics*
  • Genes, Reporter
  • Luminescent Proteins / metabolism
  • Models, Genetic
  • Models, Theoretical
  • Plasmids / genetics
  • Promoter Regions, Genetic
  • RNA Interference*
  • RNA, Antisense / genetics*
  • Red Fluorescent Protein
  • Stochastic Processes
  • Transcription, Genetic*
  • Untranslated Regions / genetics

Substances

  • Fluorescent Dyes
  • Luminescent Proteins
  • RNA, Antisense
  • Untranslated Regions
  • blue fluorescent protein, Aequorea victoria
  • DNA-Directed RNA Polymerases