3D Hollow α-MnO2 Framework as an Efficient Electrocatalyst for Lithium-Oxygen Batteries

Small. 2019 Mar;15(10):e1804958. doi: 10.1002/smll.201804958. Epub 2019 Feb 4.

Abstract

Lithium-oxygen (Li-O2 ) batteries are attracting more attention owing to their superior theoretical energy density compared to conventional Li-ion battery systems. With regards to the catalytically electrochemical reaction on a cathode, the electrocatalyst plays a key role in determining the performance of Li-O2 batteries. Herein, a new 3D hollow α-MnO2 framework (3D α-MnO2 ) with porous wall assembled by hierarchical α-MnO2 nanowires is prepared by a template-induced hydrothermal reaction and subsequent annealing treatment. Such a distinctive structure provides some essential properties for Li-O2 batteries including the intrinsic high catalytic activity of α-MnO2 , more catalytic active sites of hierarchical α-MnO2 nanowires on 3D framework, continuous hollow network and rich porosity for the storage of discharge product aggregations, and oxygen diffusion. As a consequence, 3D α-MnO2 achieves a high specific capacity of 8583 mA h g-1 at a current density of 100 mA g-1 , a superior rate capacity of 6311 mA h g-1 at 300 mA g-1 , and a very good cycling stability of 170 cycles at a current density of 200 mA g-1 with a fixed capacity of 1000 mA h g-1 . Importantly, the presented design strategy of 3D hollow framework in this work could be extended to other catalytic cathode design for Li-O2 batteries.

Keywords: 3D framework; Li-O2 battery; hollow structure; α-MnO2.