Drug interactions with dementia-related pathophysiological pathways worsen or prevent dementia

Br J Pharmacol. 2019 Sep;176(18):3413-3434. doi: 10.1111/bph.14607. Epub 2019 Mar 31.

Abstract

Many risk factors are known to induce or precipitate dementia. Drugs acting via different mechanisms can modulate cognitive performance and exert either beneficial or deleterious effects on cognition through functional or neuropathological mechanisms. This review discusses the association between several classes of drugs and cognitive impairment and dementia risk. These drugs can be divided into drugs targeting CNS disorders (e.g., anticholinergic drugs, antiepileptics, antipsychotics, benzodiazepines, and opioids) and drugs targeting non-CNS disorders (e.g., antidiabetics, antihypertensives, proton pump inhibitors, and statins). Furthermore, we sought to highlight the pharmacological mechanisms underlying their possible detrimental or beneficial effects on cognition. Anticholinergic and antiepileptic drugs were excluded from this review because their effects on cognition are well known. Studies investigating benzodiazepines have revealed an increased risk of dementia. Conclusions on dementia risk or cognitive impairment regarding opioids and antipsychotic drugs are difficult to draw. These different classes appear to impair cognition not by a single clear mechanism of action specific to each class but by several relatively interdependent and interconnected mechanisms (e.g., impaired neurotransmission, neuroinflammation, neuronal death, oxidative stress, or interactions with dementia-related pathways). The dementia risk initially associated with the use of proton pump inhibitors might have been overestimated. In contrast, statins, antihypertensive medications, and antidiabetics could potentially decrease the risk of dementia and cognitive impairment by acting in ways opposite to the mechanisms cited above. LINKED ARTICLES: This article is part of a themed section on Therapeutics for Dementia and Alzheimer's Disease: New Directions for Precision Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.18/issuetoc.

Publication types

  • Review

MeSH terms

  • Animals
  • Cognitive Dysfunction / chemically induced
  • Cognitive Dysfunction / prevention & control
  • Dementia / chemically induced*
  • Dementia / prevention & control*
  • Drug-Related Side Effects and Adverse Reactions
  • Humans
  • Risk