On-line microfluidic immobilized-enzyme reactors: A new tool for characterizing synthetic polymers

Anal Chim Acta. 2019 Apr 11:1053:62-69. doi: 10.1016/j.aca.2018.12.002. Epub 2018 Dec 12.

Abstract

Biodegradable polymeric materials may eventually replace biostable materials for medical applications, including therapeutic devices, scaffolds for tissue engineering, and drug-delivery vehicles. To further develop such materials, a more fundamental understanding is necessary to correlate parameters including chemical-composition distribution within a macromolecular structure with the final properties of the material, including particle-size. A wide variety of analytical techniques have been applied for the characterization of polymer materials, including hyphenated techniques such as comprehensive two-dimensional liquid chromatography (LC × LC). In this context, we have investigated enzymatic degradation of polyester-based nanoparticles, both in-solution and by the use of an immobilized-enzyme reactor (IMER). We have demonstrated for the first time the implementation of such an IMER in a size-exclusion chromatography system for on-line degradation and subsequent analysis of the polymer degradation products. The effect of residence times ranging from 12 s to 4 min on polymer degradation was assessed. IMER-assisted degradation is much faster compared to in-solution degradation, which requires several hours to days, and opens the possibility to use such reactors in LC × LC modulation interfaces.

Keywords: Biodegradable polymer; Enzymatic degradation; Lipase; Liquid chromatography; Nanoparticle; Polyesters.

MeSH terms

  • Enzymes, Immobilized / chemistry*
  • Enzymes, Immobilized / metabolism*
  • Lab-On-A-Chip Devices*
  • Polymers / chemical synthesis*
  • Polymers / chemistry*

Substances

  • Enzymes, Immobilized
  • Polymers