Inhibition of naphthalene leaching from municipal carbonaceous waste by a magnetic organophilic clay

J Hazard Mater. 2019 Apr 15:368:578-583. doi: 10.1016/j.jhazmat.2019.01.088. Epub 2019 Jan 26.

Abstract

Municipal solid waste conversion into biofuels via gasification is one of the latest technologies to divert waste from landfills. The byproduct of the process is a carbonaceous material, which is often tainted with polycyclic aromatic hydrocarbons (PAH) such as naphthalene that can leach into the environment and have toxic effects on aquatic organisms. In this paper, we present a novel method to address the issue of leachable naphthalene in a carbonaceous waste produced from a gasification process, using a magnetic sorbent. The sorbent was fabricated by the coprecipitation of iron oxide nanoparticles on an organophilic clay under atmospheric conditions. The characterization results show that the intercalated nanoparticles are predominantly magnetite with a diameter of 15-20 nm, and increase the clay specific surface area from 0.4 to 17 m2 g-1. Toxicity characteristic leaching procedure results indicate that the magnetic composite has a high naphthalene inhibition efficiency comparable to that of the original clay. As opposed to the clay alone, the magnetic hybrid can be separated from the carbonaceous waste with a magnet, regenerated by heat treatment, and reused without compromising its naphthalene removal efficiency. Thus, these composites may provide a cost-effective method to curtail leaching of PAH from contaminated carbonaceous waste.

Keywords: Carbonaceous waste; Magnetic nanoparticles; Naphthalene; Organophilic clay; Sorption.

Publication types

  • Research Support, Non-U.S. Gov't