The Effect of Gold Nanoparticle Concentration and Laser Fluence on the Laser-Induced Water Decomposition

J Phys Chem B. 2019 Feb 28;123(8):1869-1880. doi: 10.1021/acs.jpcb.8b11087. Epub 2019 Feb 14.

Abstract

This Article covers the influence of the concentration of gold nanoparticles on laser-induced water decomposition. It was established that addition of gold nanoparticles intensifies laser-induced water decomposition by almost 2 orders of magnitude. The water decomposition rate was shown to be maximal at a nanoparticle concentration around 1010 NP/mL, whereas a decrease or increase of nanoparticle concentration leads to a decrease of water decomposition rate. It was demonstrated that, if the concentration of nanoparticles in water-based colloid was less than 1010 NP/mL, laser irradiation of the colloid caused formation of molecular hydrogen, hydrogen peroxide, and molecular oxygen. If the concentration of nanoparticles exceeded 1011 NP/mL, only two products, molecular hydrogen and hydrogen peroxide, were formed. Correlations between the water decomposition rate and the main optical and acoustic parameters of optical breakdown-generated plasma were investigated. Variants of laser-induced decomposition of colloidal solutions of nanoparticles based on organic solvents (ethanol, propanol-2, butanol-2, diethyl ether) were also analyzed.

Publication types

  • Research Support, Non-U.S. Gov't