The Distribution of Vascular Endothelial Growth Factor (VEGF), Human Beta-Defensin-2 (HBD-2), and Hepatocyte Growth Factor (HGF) in Intra-Abdominal Adhesions in Children under One Year of Age

ScientificWorldJournal. 2018 Dec 30:2018:5953095. doi: 10.1155/2018/5953095. eCollection 2018.

Abstract

The regulatory role between ischemia related factors and antimicrobial peptides in congenital intra-abdominal adhesions has not yet been defined. The aim of this research was to investigate the appearance and relative distribution of VEGF, HBD-2, and HGF in congenital intra-abdominal adhesions compared with relatively healthy tissue controls. The study group material was obtained from 48 patients who underwent abdominal surgery due to partial or complete bowel obstruction. VEGF, HBD-2, and HGF were detected using immunohistochemistry methods and their relative distribution was evaluated by means of the semiquantitative counting method. The results were analyzed using nonparametric statistic methods. A moderate number of VEGF positive endotheliocytes were detected, but there was no statistically significant difference between the groups. In the experimental group, a moderate to high number of VEGF positive macrophages was observed. In control group tissues, such macrophages were seen in significantly lower number (U = 61.0, p = 0.001). The increase of VEGF positive cells indicates support of angiogenesis due to the hypoxic conditions in case of adhesion disease. The number of HBD-2 marked fibroblasts and macrophages was moderate to high, but only few positive endotheliocytes were observed. Persisting appearance of HBD-2 positive structures might be a result of the inflammatory process. Most specimens showed occasional HGF positive macrophages and fibroblasts and there was no statistically significant difference between the groups. The relatively weak appearance of HGF suggests that the lack of this factor promotes the formation of fibrotic changes in case of intra-abdominal adhesions.

MeSH terms

  • Abdominal Pain / metabolism
  • Female
  • Fibroblasts / metabolism
  • Hepatocyte Growth Factor / metabolism*
  • Humans
  • Infant
  • Macrophages / metabolism
  • Male
  • Tissue Adhesions / metabolism*
  • Vascular Endothelial Growth Factor A / metabolism*
  • beta-Defensins / metabolism*

Substances

  • Vascular Endothelial Growth Factor A
  • beta-Defensins
  • Hepatocyte Growth Factor