HGF regulate HTR-8/SVneo trophoblastic cells migration/invasion under hypoxic conditions through increased HIF-1α expression via MAPK and PI3K pathways

J Cell Commun Signal. 2019 Dec;13(4):503-521. doi: 10.1007/s12079-019-00505-x. Epub 2019 Jan 26.

Abstract

Hepatocyte growth factor (HGF) is reported to be down-regulated in pregnancy complications like intrauterine growth retardation and preeclampsia, which are associated with abnormal trophoblast migration/invasion. In this study, role of HGF and associated signaling pathways has been investigated in HTR-8/SVneo trophoblastic cells migration/invasion under normoxia (20% O2) and hypoxia (2% O2). HTR-8/SVneo cells exposed to hypoxia showed increase in migration and invasion as compared to cells incubated under normoxic conditions. The migration/invasion under both normoxic and hypoxic conditions was further enhanced after treatment with HGF. Subsequent to treatment with HGF, a significant increase in expression of MMP2 & MMP3 under normoxia and MMP1 & MMP9 under hypoxia was observed. Treatment of HTR-8/SVneo cells with HGF under hypoxia also led to decrease in TIMP1. Treatment of the cells with HGF led to activation of mitogen activated protein kinases (MAPK) and phosphatidylinositol 3-kinase (PI3K) signaling pathways. Inhibition of MAPK by U0126 and PI3K by LY294002 led to concomitant decrease in the HGF-mediated migration/invasion of HTR-8/SVneo cells. HGF treatment under hypoxia also led to a significant increase in hypoxia inducible factor (HIF-1α) expression. Additionally, inhibition of HIF-1α by siRNA led to decrease in HGF-mediated migration of HTR-8/SVneo cells under hypoxic conditions. Inhibition of HGF activated MAPK and PI3K signaling led to reduction in HIF-1α expression under hypoxia. In conclusion, HGF facilitates HTR-8/SVneo cell migration/invasion by activation of MAPK/PI3K signaling pathways and increased expression of MMPs. HIF-1α has a role in HGF-mediated increase in migration under hypoxic conditions.

Keywords: HGF; HIF-1α; Invasion; MAPK; MMPs; Migration; PI3K; TIMPs.