Alpha-5 Integrin Mediates Simvastatin-Induced Osteogenesis of Bone Marrow Mesenchymal Stem Cells

Int J Mol Sci. 2019 Jan 24;20(3):506. doi: 10.3390/ijms20030506.

Abstract

Simvastatin (SVS) promotes the osteogenic differentiation of mesenchymal stem cells (MSCs) and has been studied for MSC-based bone regeneration. However, the mechanism underlying SVS-induced osteogenesis is not well understood. We hypothesize that α5 integrin mediates SVS-induced osteogenic differentiation. Bone marrow MSCs (BMSCs) derived from BALB/C mice, referred to as D1 cells, were used. Alizarin red S (calcium deposition) and alkaline phosphatase (ALP) staining were used to evaluate SVS-induced osteogenesis of D1 cells. The mRNA expression levels of α5 integrin and osteogenic marker genes (bone morphogenetic protein-2 (BMP-2), runt-related transcription factor 2 (Runx2), collagen type I, ALP and osteocalcin (OC)) were detected using quantitative real-time PCR. Surface-expressed α5 integrin was detected using flow cytometry analysis. Protein expression levels of α5 integrin and phosphorylated focal adhesion kinase (p-FAK), which is downstream of α5 integrin, were detected using Western blotting. siRNA was used to deplete the expression of α5 integrin in D1 cells. The results showed that SVS dose-dependently enhanced the gene expression levels of osteogenic marker genes as well as subsequent ALP activity and calcium deposition in D1 cells. Upregulated p-FAK was accompanied by an increased protein expression level of α5 integrin after SVS treatment. Surface-expressed α5 integrin was also upregulated after SVS treatment. Depletion of α5 integrin expression significantly suppressed SVS-induced osteogenic gene expression levels, ALP activity, and calcium deposition in D1 cells. These results identify a critical role of α5 integrin in SVS-induced osteogenic differentiation of BMSCs, which may suggest a therapeutic strategy to modulate α5 integrin/FAK signaling to promote MSC-based bone regeneration.

Keywords: bone marrow mesenchymal stem cells (BMSCs); bone regeneration; osteogenic differentiation; simvastatin (SVS); α5 integrin.

MeSH terms

  • Animals
  • Bone Marrow Cells / cytology
  • Bone Marrow Cells / drug effects
  • Bone Marrow Cells / metabolism*
  • Cell Differentiation*
  • Cells, Cultured
  • Focal Adhesion Protein-Tyrosine Kinases / metabolism
  • Integrin alpha5 / genetics
  • Integrin alpha5 / metabolism*
  • Mesenchymal Stem Cells / cytology
  • Mesenchymal Stem Cells / drug effects
  • Mesenchymal Stem Cells / metabolism*
  • Mice
  • Mice, Inbred BALB C
  • Osteogenesis*
  • Signal Transduction
  • Simvastatin / pharmacology
  • Up-Regulation

Substances

  • Integrin alpha5
  • Simvastatin
  • Focal Adhesion Protein-Tyrosine Kinases