RNA-sequencing of a citrus bud-feeder, Podagricomela weisei (Coleoptera: Chrysomelidae), reveals xenobiotic metabolism/core RNAi machinery-associated genes and conserved miRNAs

Comp Biochem Physiol Part D Genomics Proteomics. 2019 Mar:29:339-350. doi: 10.1016/j.cbd.2019.01.005. Epub 2019 Jan 15.

Abstract

The citrus leaf-mining beetle, Podagricomela weisei Heikertinger, is an important citrus pest that ingests the mesophyll and new shoots. The mechanism underlying the xenobiotic metabolism of P. weisei is not well understood, in part because of a lack of available genomic and transcriptomic data, which has hampered the development of novel pest management approaches [e.g., RNA interference (RNAi)]. In this study, we completed the deep sequencing of the P. weisei transcriptome to identify factors potentially involved in xenobiotic metabolism and the core RNAi machinery. The sequencing of the P. weisei transcriptome generated >27 million clean reads, ultimately yielding 90,410 unigenes with an N50 of 1065 bp. The unigenes were used as queries to search the Nr database, which revealed that 21,847 unigenes were homologous to known genes in various species. Transcripts encoding genes involved in xenobiotic metabolism were identified, including genes encoding cytochrome P450 monooxygenase (P450, 47 unigenes), glutathione S-transferase (GST, 12 unigenes), esterase (EST, 25 unigenes), and the ATP-binding cassette transporter (ABC transporter, 32 unigenes). A parallel sequencing of small RNAs detected 30 conserved miRNAs, with the most abundant being Pwe-miR-1-3p, with an expression level reaching 517,996 reads in the prepared library, followed by Pwe-miR-8-3p (149,402 reads). Genes encoding components of the miRNA, siRNA, and piRNA pathways were also identified, and the results indicated that P. weisei possesses only one of each gene in all three pathways. In summary, this is the first detailed analysis of the transcriptome and small RNAs of P. weisei. The datasets presented herein may form the basis for future molecular characterizations of P. weisei as well as the development of enhanced pest control strategies.

Keywords: Citrus pests; Insecticide resistance; Podagricomela weisei; RNAi; miRNA.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Citrus / parasitology*
  • Coleoptera / genetics*
  • Genes, Insect*
  • MicroRNAs / genetics*
  • Pest Control, Biological
  • RNA Interference*
  • Sequence Analysis, RNA / methods*
  • Xenobiotics / metabolism*

Substances

  • MicroRNAs
  • Xenobiotics