Mechanistic Study of Wettability Changes on Calcite by Molecules Containing a Polar Hydroxyl Functional Group and Nonpolar Benzene Rings

Langmuir. 2019 Feb 19;35(7):2527-2537. doi: 10.1021/acs.langmuir.8b03666. Epub 2019 Feb 11.

Abstract

Oil extraction efficiency strongly depends on the wettability status (oil- vs water-wet) of reservoir rocks during oil recovery. Aromatic compounds with polar functional groups in crude oil have a significant influence on binding hydrophobic molecules to mineral surfaces. Most of these compounds are in the asphaltene fraction of crude oil. This study focuses on the hydroxyl functional group, an identified functional group in asphaltenes, to understand how the interactions between hydroxyl groups in asphaltenes and mineral surfaces begin. Phenol and 1-naphthol are used as asphaltene surrogates to model the simplest version of asphaltenes. Adsorption of oil molecules on the calcite {101̅4} surface is described using static quantum-mechanical density functional theory (DFT) calculations and classical molecular dynamics (MD) simulations. DFT calculations indicate that adsorption of phenol and 1-naphthol occurs preferentially between their hydroxyl group and calcite step edges. 1-Naphthol adsorbs more strongly than phenol, with different adsorption geometries due to the larger hydrophobic part of 1-naphthol. MD simulations show that phenol can behave as an agent to separate oil from the water phase and to bind the oil phase to the calcite surface in the water/oil mixture. In the presence of phenol, partial separation of water/oil with an incomplete lining of phenol at the water/oil boundary is observed after 0.2 ns. After 1 ns, perfect separation of water/oil with a complete lining of phenol at the water/oil boundary is observed, and the calcite surface becomes oil-wet. Phenol molecules enclose decane molecules at the water-decane boundary preventing water from repelling decane molecules from the calcite surface and facilitate further accumulation of hydrocarbons near the surface, rendering the surface oil-wet. This study indicates phenol and 1-naphthol to be good proxies for polar components in oil, and they can be used in designing further experiments to test pH, salinity, and temperature dependence to improve oil recovery.