Independent Tailoring of Macropore and Mesopore Space in TiO2 Monoliths

Inorg Chem. 2019 Feb 18;58(4):2599-2609. doi: 10.1021/acs.inorgchem.8b03203. Epub 2019 Jan 25.

Abstract

TiO2 monoliths were synthesized by a partially hindered sol-gel process. Various synthesis parameters like precursor concentrations and gelation temperature were varied to investigate changes in the macroporosity (being in the range of micrometers) and to determine influences on the macropore formation mechanism. Ionic liquids (ILs) were used as templates to vary the mesopore size independently from the macropore size. Depending on the synthesis parameters, TiO2 monoliths with exclusive mesoporosity or with hierarchical meso-/macropore structure were received, and the range of macropores can be shifted between 100 nm and 10 μm without influencing the mesopore diameter. Pore volumes up to 880 mm3/g were achieved, as determined by mercury intrusion porosimetry. The mesopores' diameter can be adjusted between 6 and 25 nm by adding different amounts of IL, and surface areas up to 260 m2/g and mesopore volumes of 0.5 cm3/g were obtained, based on N2-physisorption measurements. The monoliths were cladded by polymer, allowing for studying the flow-through properties depending on the macropore size. This precise control for tailored macropores enables the design of optimized TiO2 monoliths with respect to the desired application requirements.