Effect of Sonication Time on Magnetorheological Effect for Monomodal Magnetic Elastomers

Gels. 2018 May 23;4(2):49. doi: 10.3390/gels4020049.

Abstract

The effect of sonication time on the storage modulus and particle morphology for magnetic elastomers was investigated by dynamic viscoelastic measurements and morphological studies. An ultrasonic wave using a homogenizer was irradiated to magnetic liquids containing 70 wt % carbonyl iron, for up to 30 min before cure. SEM photographs revealed that magnetic particles were randomly dispersed in the polyurethane matrix for magnetic elastomers with sonication. A parameter showing nonlinear viscoelasticity for magnetic elastomers with sonication decreased from 0.75 to 0.4, indicating that the aggregations of magnetic particles had been destroyed by the sonication. The storage modulus at 500 mT at the linear viscoelastic regime significantly increased with the irradiation time, reaching saturation after 10 min; this suggests an increase in the number of chains of magnetic particles by sonication, due to the random dispersion of magnetic particles. At high strains, the storage modulus at 500 mT increased by 8.9 kPa by sonication, indicating the number of chains of magnetic particles which were not destroyed by increased sonication. It was also found that the storage modulus for polyurethane elastomers without magnetic particles was not varied by sonication, suggesting that the polyurethane network was not broken. The effect of sonication time on the viscoelastic properties, and on the magnetorheological response for magnetic elastomers, is discussed.

Keywords: magnetic elastomer; magnetic gel; magnetorheology; sonication; stimuli-responsive material; viscoelastic property.