Magnetic Mixed Micelles Composed of a Non-Ionic Surfactant and Nitroxide Radicals Containing a D-Glucosamine Unit: Preparation, Stability, and Biomedical Application

Pharmaceutics. 2019 Jan 19;11(1):42. doi: 10.3390/pharmaceutics11010042.

Abstract

Metal-free magnetic mixed micelles (mean diameter: < 20 nm) were prepared by mixing the biocompatible non-ionic surfactant Tween 80 and the non-toxic, hydrophobic pyrrolidine-N-oxyl radicals bearing a D-glucosamine unit in pH 7.4 phosphate-buffered saline (PBS). The time-course stability and in vitro magnetic resonance imaging (MRI) contrast ability of the mixed micelles was found to depend on the length of the alkyl chain in the nitroxide radicals. It was also confirmed that the mixed micelles exhibited no toxicity in vivo and in vitro and high stability in the presence of a large excess of ascorbic acid. The in vivo MRI experiment revealed that one of these mixed micelles showed much higher contrast enhancement in the proton longitudinal relaxation time (T₁) weighted images than other magnetic mixed micelles that we have reported previously. Thus, the magnetic mixed micelles presented here are expected to serve as a promising contrast agent for theranostic nanomedicines, such as MRI-visible targeted drug delivery carriers.

Keywords: cancer; glucosamine; magnetic resonance imaging; micelle; nitroxide radical.