Composite Magnetic Photocatalyst Bi₅O₇I/MnxZn1-xFe₂O₄: Hydrothermal-Roasting Preparation and Excellent Photocatalytic Activity

Nanomaterials (Basel). 2019 Jan 18;9(1):118. doi: 10.3390/nano9010118.

Abstract

A new composite magnetic photocatalyst, Bi₅O₇I/MnxZn1-xFe₂O₄, prepared by a hydrothermal-roasting method was studied. The photocatalytic properties of Bi₅O₇I/MnxZn1-xFe₂O₄ were evaluated by degradation of Rhodamine B (RhB) under simulated sunlight irradiation, and the structures and properties were characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible light (UV-Vis) diffuse reflectance spectra (DRS), and a vibrating sample magnetometer (VSM). The results indicated that Bi₅O₇I/MnxZn1-xFe₂O₄ was an orthorhombic crystal, which was similar to that observed for Bi₅O₇I. Bi₅O₇I/MnxZn1-xFe₂O₄ consisted of irregularly shaped nanosheets that were 40⁻60 nm thick. The most probable pore size was 24.1 nm and the specific surface area was 7.07 m²/g. Bi₅O₇I/MnxZn1-xFe₂O₄ could absorb both ultraviolet and visible light, and the energy gap value was 3.22 eV. The saturation magnetization, coercivity and residual magnetization of Bi₅O₇I/MnxZn1-xFe₂O₄ were 3.9 emu/g, 126.6 Oe, and 0.7 emu/g respectively, which could help Bi₅O₇I/MnxZn1-xFe₂O₄ be separated and recycled from wastewater under the action of an external magnetic field. The recycling experiments revealed that the average recovery rate of the photocatalyst was 90.1%, and the photocatalytic activity was still more than 81.1% after five cycles.

Keywords: Bi5O7I/MnxZn1−xFe2O4; hydrothermal-roasting method; magnetic photocatalyst.