Grasses and grazers in arid rangelands: Impact of sheep management on forage and non-forage grass populations

J Environ Manage. 2019 Apr 1:235:42-50. doi: 10.1016/j.jenvman.2019.01.037. Epub 2019 Jan 19.

Abstract

Ecological modeling that includes plant population processes as a critical determinant of vegetation dynamics is useful for sustainable rangeland management. However, we know little about how long-term sheep grazing pressure drives the plant community structure through changes in different native grass species at both individual and population levels. In this study, we hypothesized that plant populations perform differently under different grazing management due to their specified preference by livestock animals. We also tested whether grazing-rest management, aimed at increasing long-term rangeland sustainability, improves the plant growth of forage grass species. We evaluated plant density, individual morphology and plant-size distribution of dominant grass populations in permanent exclosures and open fields under moderate and intensive grazing pressures in Patagonian steppes (South America). We also examined the effects of seasonal grazing-rest managements on the growth and tillering (asexual reproduction) of forage species plants, using temporary mobile exclosures. Grazing intensity changed population density and structure according to species. Compared to permanent exclosures, moderate grazing maintained the plant density of palatable species highly preferred by sheep, reduced the standing-dead biomass proportion of individual plants, and promoted the green biomass of tussocks. Conversely, intensive grazing (double stocking rates) decreased the plant density and individual size of species highly preferred by sheep, and increased the plant density of non-preferred species. Grazing-rest enhanced forage grass species growth and reproduction compared with year-round grazing management, especially during the growing season of a wet year. Our studies support that sheep can be managed to control the plant-size distribution of dominant grass species, their population dynamics, and thereby the overall forage availability at the community level. Both moderate grazing and grazing-rest management can improve the forage availability and preserve the dominant native grasses. We suggest applying a plant population dynamics perspective to facilitate sustainable management of global rangelands.

Keywords: Forage provision; Grazing-rest; Livestock; Patagonia; Population approach; Rangeland management.

MeSH terms

  • Animals
  • Ecology
  • Ecosystem
  • Plants*
  • Poaceae*
  • Seasons
  • Sheep
  • South America