Room-temperature high-performance CsPbBr3 perovskite tetrahedral microlasers

Nanoscale. 2019 Jan 31;11(5):2393-2400. doi: 10.1039/c8nr09856e.

Abstract

With the goals of faster coherent light sources with lower power consumption, laser miniaturization has been intensively pursued in the past four decades. Novel microscale cavities with efficient feedback and distinct emission profiles are essential for excellent performance of laser devices and for exploring their new functionalities. Here, for the first time, well-defined high-quality tetrahedron-shaped CsPbBr3 perovskite microcavities with smooth surfaces were synthesized via the vapor growth method. A room-temperature high-performance tetrahedral microlaser was realized based on CsPbBr3 perovskite single crystals. The three-dimensional total internal reflection mode inside the tetrahedral cavity led to a high-performance microlaser with a linewidth of only ∼0.3 nm at 538 nm emission wavelength and a unique profile with three emission beams into free space with triangular symmetry. In addition, the perovskite tetrahedral microlasers could be pumped by two-photon absorption with threshold only about 2.5 times higher than that of a one-photon laser. The high-performance tetrahedral microlaser with a distinct emission profile enriches the microscale laser family and may find exceptional applications in optical manipulation, communication and on-chip beam steering.